Algorithm/📊 Problem Solving

[백준/BOJ] 18352 - 특정 거리의 도시 찾기

posted by sangmin

18352 - 특정 거리의 도시 찾기

📌 문제

어떤 나라에는 1번부터 N번까지의 도시와 M개의 단방향 도로가 존재한다. 모든 도로의 거리는 1이다.

이 때 특정한 도시 X로부터 출발하여 도달할 수 있는 모든 도시 중에서, 최단 거리가 정확히 K인 모든 도시들의 번호를 출력하는 프로그램을 작성하시오. 또한 출발 도시 X에서 출발 도시 X로 가는 최단 거리는 항상 0이라고 가정한다.

예를 들어 N=4, K=2, X=1일 때 다음과 같이 그래프가 구성되어 있다고 가정하자.

image

이 때 1번 도시에서 출발하여 도달할 수 있는 도시 중에서, 최단 거리가 2인 도시는 4번 도시 뿐이다. 2번과 3번 도시의 경우, 최단 거리가 1이기 때문에 출력하지 않는다.

📋 코드

import heapq

def dijkstra(start):
    q = []
    heapq.heappush(q, (0, start))
    distance[start] = 0

    while q:
        dist, now = heapq.heappop(q)

        if distance[now] < dist:
            continue

        for i in graph[now]:
            cost = dist + i[1]
            if cost < distance[i[0]]:
                distance[i[0]] = cost
                heapq.heappush(q, (cost, i[0]))


N, M, K, X = map(int, input().split())
graph = [[] for _ in range(N+1)]
distance = [int(1e9) for _ in range(N+1)]

for i in range(M):
    a, b = map(int, input().split())
    graph[a].append((b, 1))

dijkstra(X)

flag = False
for i in range(1, N+1):
    if distance[i] == K:
        flag = True
        print(i)

if not flag:
    print(-1)

💡 한마디

기본적인 다익스트라 알고리즘을 이용하여 어렵지 않게 풀 수 있었다.

 

18352번: 특정 거리의 도시 찾기

첫째 줄에 도시의 개수 N, 도로의 개수 M, 거리 정보 K, 출발 도시의 번호 X가 주어진다. (2 ≤ N ≤ 300,000, 1 ≤ M ≤ 1,000,000, 1 ≤ K ≤ 300,000, 1 ≤ X ≤ N) 둘째 줄부터 M개의 줄에 걸쳐서 두 개

www.acmicpc.net